Pages

Wednesday, 7 December 2011

Monday, 5 December 2011

Wednesday, 16 November 2011

Matematik Islam (k.k. 700 – 1600)

Kekalifahan Islam (Empayar Islam) yang diasaskan di Timur Tengah, Afrika Utara, Iberia, dan sesetengah bahagian India (di Pakistan) pada abad ke-8 mengekalkan dan menterjemahkan banyak teks matematik keyunanian (daripada bahasa Greek kepada bahasa Arab) yang kebanyakannya telah dilupai di Eropah pada masa itu. Penterjemahan berbagai-bagai teks matematik India dalam bahasa Arab memberikan kesan yang utama kepada matematik Islam, termasuk pengenalan angka Hindu-Arab ketika karya-karya Brahmagupta diterjemahkan dalam bahasa Arab pada kira-kira tahun 766. Karya-karya India dan keyunanian menyediakan asas untuk penyumbangan Islam yang penting dalam bidang matematik yang menyusul. Serupa dengan ahli-ahli matematik India pada waktu itu, ahli-ahli Islam minat akan astronomi khususnya.

Walaupun kebanyakan teks matematik Islam ditulis dalam bahasa Arab, bukan semuanya ditulis oleh orang Arab kerana, serupa dengan status bahasa Greek di dunia keyunanian, bahasa Arab dipergunakan sebagai bahasa tertulis oleh cendekiawan-cendekiawan bukan Arab di seluruh dunia Islam pada waktu itu. Sesetengah ahli matematik yang terpenting adalah orang Parsi.

Muhammad ibn Musa al-Khwarizmi, ahli astronomi Parsi abad ke-9 dari Kekalifahan Baghdad, menulis banyak buku yang penting mengenai angka Hindu-Arab dan kaedah untuk menyelesaikan persamaan. Perkataan algoritma berasal daripada namanya, manakala perkataan algebra berasal daripada judul Al-Jabr wa-al-Muqabilah, salah satu karyanya. Al-Khwarizmi sering dianggap sebagai bapa algebra moden dan algoritma moden.

Perkembangan algebra yang lebih lanjut telah dibuat oleh Abu Bakr al-Karaji (953—1029) dalam karyanya, al-Fakhri, yang memperluas kaedah algebra untuk merangkumi kuasa kamiran serta punca kuasa bagi kuantiti yang tidak diketahui. Pada abad ke-10, Abul Wafa menterjemahkan karya-karya Diophantus dalam bahasa Arab dan mengembangkan fungsi tangen.

Omar Khayyam, pemuisi serta ahli matematik abad ke-12, menulis Perbincangan mengenai Kesukaran dalam Euclid, sebuah buku mengenai kecacatan dalam karya Unsur-unsur Euclid. Beliau memberi penyelesaian geometri untuk persamaan kuasa tiga yang merupakan salah satu perkembangan yang paling asli dalam matematik Islam. Khayyam amat terpengaruh dalam pembaharuan takwim. Sebahagian besar trigonometri sfera dikembangkan oleh Nasir al-Din Tusi (Nasireddin), salah seorang ahli matematik Parsi pada abad ke-13. Beliau juga menulis sebuah karya yang terpengaruh mengenai postulat selari Euclid.

Dalam abad ke-15, Ghiyath al-Kashi mengira nilai π sehingga tempat perpuluhan ke-16. Kashi juga mencipta algoritma untuk mengira punca kuasa ke-n yang merupakan kes yang khas untuk kaedah-kaedah yang diberikan berabad-abad kemudian oleh Ruffini dan Horner. Ahli-ahli matematik Islam lain yang terkenal termasuk al-Samawal, Abu'l-Hasan al-Uqlidisi, Jamshid al-Kashi, Thabit ibn Qurra, Abu Kamil dan Abu Sahl al-Kuhi.

Pada zaman Kerajaan Turki Uthmaniyah dalam abad ke 15, perkembangan matematik Islam menjadi lembap. Ini adalah selari dengan kelembapan perkembangan matematik ketika orang Rom menaklukkan dunia keyunanian.


Read more...

Matematik Pada Awalnya

Lama sebelum rekod tertulis yang terawal, terdapat lukisan-lukisan yang menunjukkan pengetahuan tentang matematik dan pengukuran masa berasaskan bintang. Umpamanya, para ahli paleontologi telah menemui batuan-batuan oker di sebuah gua di Afrika Selatan yang dihiasi dengan corak-corak geometri tercakar yang wujud sejak dari kira-kira 70 milenium SM lagi. Tambahan pula, artifak prasejarah yang ditemui di Afrika dan Perancis yang wujud sejak dari antara 35000 SM dan 20,000 SM menunjukkan percubaan-percubaan awal untuk mengukur masa. Bukti juga wujud bahawa penghitungan awal melibatkan kaum wanita yang menyimpan rekod-rekod kitaran haid mereka; umpamanya 28, 29, 30 cakar pada tulang atau batu, diikuti oleh garis mendatar. Tambahan pula, para pemburu memiliki konsep "satu", "dua", dan "banyak", serta juga gagasan "tiada" atau "sifar" apabila mempertimbangkan kawanan haiwan.

Tulang Ishango yang ditemukan di kawasan hulu air Sungai Nile (Congo) telah wujud seawal 20,000 SM. Salah satu tafsiran yang biasa adalah bahawa tulang itu merupakan bukti jujukan-jujukan nombor perdana dan pendaraban Mesir kuno terawal yang diketahui. Orang Mesir Pradinasti pada milenium ke-5 SM juga menggambarkan reka-reka bentuk ruang geometri. Telah didakwa juga bahawa monumen-monumen megalit dari seawal milenium ke-5 SM di Mesir dan kemudiannya monumen-monumen di England dan Scotland dari milenium ke-3 SM menggabungkan gagasan-gagasan geometri seperti bulatan, elips, dan tigaan Pythagorus ke dalam reka bentuk mereka, serta juga mungkin memahami pengukuran masa berdasarkan pergerakan bintang-bintang. Sejak dari kira-kira tahun 3100 SM, orang Mesir memperkenalkan sistem perpuluhan terawal yang diketahui yang membenarkan pengiraan tak tentu melalui simbol-simbol yang baru. Pada kira-kira tahun 2600 SM, teknik-teknik pembinaan besar-besaran Mesir melambangkan bukan sahaja pengukuran (survei) tetapi juga membayangkan pengetahuan nisbah keemasan.

Matematik terawal India kuno yang diketahui wujud sejak dari kira-kira 3000-2600 SM di Tamadun Lembah Indus (Tamadun Harappan) di India Utara dan Pakistan. India kuno mengembangkan:

sebuah sistem timbang dan ukur seragam yang mempergunakan sistem perpuluhan;
suatu teknologi bata yang maju yang menggunakan nisbah;
jalan-jalan raya yang diletakkan pada sudut tegak yang sempurna; dan
sebilangan bentuk dan reka bentuk geometri, termasuk bentuk-bentuk tempayan, kuboid, kon, silinder, serta lukisan-lukisan bulatan dan segi tiga sepusat dan bersilang.

Alat-alat matematik yang ditemukan termasuk sebatang pembaris perpuluhan yang tepat, dengan pembahagian-pembahagian kecil dan persis, sebuah alat kulit yang bertindak sebagai kompas untuk mengukur sudut-sudut pada permukaan satah atau pada ufuk dalam gandaan 40-360 darjah, sebuah alat kulit yang digunakan untuk mengukur 8–12 bahagian penuh ufuk dan langit, serta sebuah alat untuk mengukur kedudukan bintang bagi tujuan-tujuan pengemudian.

Skrip Indus masih tidak dapat ditafsirkan dan oleh itu, tidak banyak yang diketahui tentang bentuk tertulis matematik Harappan. Bukti arkeologi telah menyebabkan sesetengah ahli sejarah mempercayai bahawa tamadun ini menggunakan sistem berangka asas 8 dan memiliki pengetahuan tentang nisbah lilitan bulatan dengan diameternya , iaitu nilai π.

Read more...

Sejarah Matematik

Perkataan "matematik" berasal daripada perkataan Yunani, μάθημα (máthema), yang

bermakna "sains, ilmu, atau pembelajaran"; μαθηματικός (mathematikós) bermaksud "suka belajar". Istilah ini kini merujuk kepada sejumlah ilmu yang tertentu -- pengajian deduktif pada kuantiti, struktur, ruang, dan tukaran.

Sementara hampir semua kebudayaan menggunakan matematik asas (mengira dan mengukur), pengembangan matematik baru telah dilaporkan dalam beberapa kebudayaan dan zaman. Sebelum zaman moden dan peluasan ilmu di merata-rata dunia, contoh-contoh tulisan pengembangan matematik baru mengancam kegemilangan pada sebahagian orang tempatan. Kebanyakan teks matematik kuno yang dapat diperolehi datang dari Mesir purba di Kerajaan Tengah sekitar 1300-1200 SM (Berlin 6619), Mesopotamia sekitar 1800 SM (Plimpton 322), dan India kuno sekitar 800-500 SM (Sulba Sutras). Semua teks tersebut memberikan perhatian pada kononnya dipanggil Teorem Pythagoras, yang nampaknya pengembangan matematik terawal dan tersebar selepas aritmetik dan geometri asas. Bukti pertama yang benar aktiviti matematik di China dapat ditemui pada simbol berangka pada tulang keramat, yang bertarikh kira-kira 1300 SM [1] [2], sementara Dinasti Han di China Kuno menyumbangkan Buku Panduan Pulau Laut dan Sembilan Bab mengenai Seni Matematik dari abad ke-2 SM sehingga abad ke-2 M. Yunani dan kebudayaan keyunanian Mesir, Mesopotamia dan bandar Syracuse menambahkan ilmu matematik. Matematik Jainisme meyumbang dari abad ke-4 SM sehingga abad ke-2 Masihi, sementara ahli matematik Hindu dari abad ke-5 dan ahli matematik Islam dari abad ke-9 membuat penyumbangan banyak pada matematik.

Satu ciri menarik perhatian mengenai sejarah matematik kuno dan Zaman Pertengahan adalah pengembangan lanjut matematik mengikut dengan berapa abad stagnasi. Mulanya di Zaman Pertengahan Itali di abad ke-16, pengembangan matematik baru, berinteraksi dengan penemuan saintifik baru, telah dilakukan pada tahap yang sentiasa bertambahan, dan bersambungan ke hari ini.



Sementara hampir semua kebudayaan menggunakan matematik asas (mengira dan mengukur), pengembangan matematik baru telah dilaporkan dalam beberapa kebudayaan dan zaman. Sebelum zaman moden dan peluasan ilmu di merata-rata dunia, contoh-contoh tulisan pengembangan matematik baru mengancam kegemilangan pada sebahagian orang tempatan. Kebanyakan teks matematik kuno yang dapat diperolehi datang dari Mesir purba di Kerajaan Tengah sekitar 1300-1200 SM (Berlin 6619), Mesopotamia sekitar 1800 SM (Plimpton 322), dan India kuno sekitar 800-500 SM (Sulba Sutras). Semua teks tersebut memberikan perhatian pada kononnya dipanggil Teorem Pythagoras, yang nampaknya pengembangan matematik terawal dan tersebar selepas aritmetik dan geometri asas. Bukti pertama yang benar aktiviti matematik di China dapat ditemui pada simbol berangka pada tulang keramat, yang bertarikh kira-kira 1300 SM [1] [2], sementara Dinasti Han di China Kuno menyumbangkan Buku Panduan Pulau Laut dan Sembilan Bab mengenai Seni Matematik dari abad ke-2 SM sehingga abad ke-2 M. Yunani dan kebudayaan keyunanian Mesir, Mesopotamia dan bandar Syracuse menambahkan ilmu matematik. Matematik Jainisme meyumbang dari abad ke-4 SM sehingga abad ke-2 Masihi, sementara ahli matematik Hindu dari abad ke-5 dan ahli matematik Islam dari abad ke-9 membuat penyumbangan banyak pada matematik.

Satu ciri menarik perhatian mengenai sejarah matematik kuno dan Zaman Pertengahan adalah pengembangan lanjut matematik mengikut dengan berapa abad stagnasi. Mulanya di Zaman Pertengahan Itali di abad ke-16, pengembangan matematik baru, berinteraksi dengan penemuan saintifik baru, telah dilakukan pada tahap yang sentiasa bertambahan, dan bersambungan ke hari ini.

Read more...

Wednesday, 2 November 2011

Jom Main Sudoku

Mathematics learning involves a blend of many skills. Be it calculative, logical , understanding , interpretation, analysis or application . There are a number of ways in which these skills can be inculcated.

One way is playing games and solving puzzles.
Sudoku is an interesting addictive Mathematical puzzle .
How to Play?
Play Sudoku Online.
Mathematics of Sudoku.
Make your own puzzle using Sudoku Puzzle Maker (Free)


Read more...

Tuesday, 1 November 2011

Teknik mengira

Jom kita belajar teknik mengira dari video yang saya share kan ini :







Read more...

Rahsia Ilmu Matematik

Pelbagai perkara boleh kita perolehi sekiranya kita mengkaji, meneliti dan membuat eksperimen tentang sesuatu perkara tersebut. Berikut sebagai contohnya: Siapa sangka nombor-nombor ini seperti saling ada hubung-kait sesama sendiri bukan? Maha Hebat Ciptaan NYA, Subhanallah!


1 x 8 + 1 = 9
12 x 8 + 2 = 98
123 x 8 + 3 = 987
1234 x 8 + 4 = 9876
12345 x 8 + 5 = 98765
123456 x 8 + 6 = 987654
1234567 x 8 + 7 = 9876543
12345678 x 8 + 8 = 98765432
123456789 x 8 + 9 = 987654321

1 x 9 + 2 = 11
12 x 9 + 3 = 111
123 x 9 + 4 = 1111
1234 x 9 + 5 = 11111
12345 x 9 + 6 = 111111
123456 x 9 + 7 = 1111111
1234567 x 9 + 8 = 11111111
12345678 x 9 + 9 = 111111111
123456789 x 9 +10= 1111111111

9 x 9 + 7 = 88
98 x 9 + 6 = 888
987 x 9 + 5 = 8888
9876 x 9 + 4 = 88888
98765 x 9 + 3 = 888888
987654 x 9 + 2 = 8888888
9876543 x 9 + 1 = 88888888
98765432 x 9 + 0 = 888888888

Hebat bukan??

Cuba lihat pada simetri ini pula:

1 x 1 = 1
11 x 11 = 121
111 x 111 = 12321
1111 x 1111 = 1234321
11111 x 11111 = 123454321
111111 x 111111 = 12345654321
1111111 x 1111111 = 1234567654321
11111111 x 11111111 = 123456787654321
111111111 x 111111111 = 12345678987654321

Sekarang, lihat di bawah:
101%

Dari sudut pandangan ilmu Matematik:

Apa yang sama dengan 100%?
Apa yang dimaksudkan dengan memberi sesuatu lebih dari 100%?

Pernahkah anda terfikir bahawa ada orang yang berkata hendak memberi lebih dari 100%?

Kita juga pernah mendengar ada orang yang mampu memberi LEBIH dari 100%.

Bagaimana kalau kita memperolehi 101%?

Apa yang sama dengan 100% dalam kehidupan kita?

Di bawah adalah jawapan kepada persoalan di atas dengan menggunakan kaedah formula matematik:

Sekiranya:

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

melambangkan nombor berikut:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26.

Sekiranya:

Bekerja Kuat atau dalam Bahasa Inggeris disebut:

H-A-R-D-W-O- R- K

8+1+18+4+23+ 15+18+11 = 98%

Dan:

Ilmu Pengethuan atau dalam Bahasa Inggeris disebut:

K-N-O-W-L-E- D-G-E

11+14+15+23+ 12+5+4+7+ 5 = 96%

Tetapi:

Akhlak atau dalam Bahasa Inggeris disebut:

A-T-T-I-T-U- D-E

1+20+20+9+20+ 21+4+5 = 100%

SEKARANG, kita lihat sejauh manakah Cinta kepada Tuhan boleh membawa kita:

L-O-V-E-O-F- G-O-D

12+15+22+5+15+ 6+7+15+4 = 101%

Maka, kita boleh menyimpulkan secara kajian ilmu Matematik bahawa:

Bekerja Kuat dan mempunyai Ilmu Pengetahuan sahaja tidak cukup untuk seseorang mencapai sesuatu dalam hidupnya melainkan setiap yang dia lakukan hendaklah dengan Berakhlak Mulia.

Tetapi dengan meletakkan keikhlasan dan Cinta kepada Allah SWT lah yang membuatkan seseorang itu dapat mencapai
101% dalam kehidupannya…



Read more...

Apa itu Matematik?

Matematik didefinisikan sebagai pembelajaran/kajian mengenai kuantiti, corak struktur, perubahan dan ruang, atau dalam erti kata lain, kajian mengenai nombor dan gambar rajah. Matematik juga ialah penyiasatan aksiomatik yang menerangkan struktur abstrak menggunakan logik dan simbol matematik. Matematik dilihat sebagai lanjutan mudah kepada bahasa perbualan dan penulisan, dengan kosa kata dan tatabahasa yang sangat jelas, untuk menghurai dan mendalami hubungan fizikal dan konsep.


Matematik juga adalah badan ilmu berpusat pada konsep-konsep ibarat kuantiti, struktur, ruang, dan perubahan, dan disiplin kajian-kajian ilmiah berkaitan dengannya; Benjamin Peirce memanggil ia “sains yang melukis kesimpulan-kesimpulan yang perlu”. Ia berkembang, melalui penggunaan pemujaradan dan penaakulan logik, daripada membilang, pengiraan, pengukuran, dan kajian bentuk-bentuk dan pergerakan objek-objek fizikal. Ahli-ahli matematik meneroka konsep-konsep tersebut bertujuan untuk merumuskan corak-corak baru dan mewujudkan kebenaran mereka secara penyuntingan ketat yang dipilih melalui aksiom dan takrif-takrif yang sesuai.

Pengetahuan dan penggunaan matematik asas sentiasa berada di dalam bahagian sedia ada dan penting bagi kehidupan individu dan kumpulan tertentu . Penghalusan bagi idea-idea asas adalah dapat dilihat purba di teks-teks matematik berasal dalam Mesir kuno, Mesopotamia, India Purba, dan China Purba, bertambah dengan ketelitian kemudiannya diperkenalkan oleh Yunani Purba. Setakat ini , pembangunan diteruskan dalam keadaan tidak sangat memberangsangkan sehingga Zaman Pembaharuan pada abad ke-16 di mana inovasi-inovasi matematik berinteraksi dengan penemuan-penemuan saintifik baru yang membawa kepada satu pemecutan dalam pemahaman yang diteruskan.



Read more...

Salam perkenalan

Assalamualaikum.

Akhirnya pembinaan laman blog ini berjaya dilakukan.
Nantikan perkembangan seterusnya dalam bidang matematik.
Read more...